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Abstract. Risk cubes, actually a 5x5 matrix, used in industry characterize particular risks in 
terms of the likelihood of occurrence, and the consequence of the actualized risk. Human 
cognitive bias research led by Daniel Kahneman and Amos Tversky exposed systematic 
translations of objective probability and value as judged by human subjects. An examination of 
industry-generated risk cube data reveals evidence of biases in the judgment of likelihood and 
consequence. In addition, other biases -- including a ‘diagonal bias’ -- are revealed in the risk 
cube data. The evidence presented could improve risk cube based risk analysis. 
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RISK CUBES 
In the industry data analyzed for this paper, the two parameters of risk cube data are likelihood 
(L) and consequence (C). While the Term “Risk Cube” is used, the graphic is actually a 5x5 
matrix.  It is unclear why the term a cube took hold as it has only two dimensions.  The use of the 
term “cube” is used as a matter of convenience for the reader.  The cognitive bias literature uses 
the terms subjective probability and utility, respectively. In this paper, the possible distinctions 
between these terms will not be developed. (Note:  For historical reasons, “value” and “value 
function” are used in the psychology literature in reference to what we here more clearly refer to 
as “utility” and “utility function.”) Risk is usually computed as the product of Likelihood and 
Consequence:  R = L x C. Usually, likelihood is scaled from 0-1, as is consequence. 
 

Table 1:  Equivalent terms: Likelihood and probability, consequence and value 
Subjective Parameters 

Likelihood (L) Consequence (C) 
Subjective Probability, π(p) Utility (negative), U-(v) 

Shown on: 
Ordinate, Y axis Abscissa, X axis 

Objective Parameters 
Objective Probability, p Objective Value, v 

 
Risk Cubes in Industry. The most common tool used to track and manage risks is the risk cube, 
an example of which is shown in Figure 1. The shape and number of zones are determined by 
individual companies, and vary in different risk cubes. Lines dividing the zones are iso-risk lines. 
Allowing the zones to be fuzzy eventually leads to continuous numbers. Risk points appear 
inside the cube. The cube provides a visual communication aid of the risks posed by particular 
events. The closer to the lower left corner of the cube the risk is placed, the lower the risk. 
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Figure 1:  Risk cube with zones 

  
This basic graphical representation has several weaknesses, including a lack of specific 

granularity and the lack of a repeatable way to locate the risk in the cube. A repeatable means of 
placing risk points is generally required for human beings. The lack of granularity in the risk 
cube shown in Figure 1, when used in practice, exposes the fact that most people cannot 
repeatedly judge real risks and accurately place risks points in the same location. Further, the 
continuous scale hinders communication among humans, since un-resolvable discussion may 
occur about the location of risk points. Industry needs an appropriate risk cube with sufficient but 
not excessive granularity. A risk cube used by industry needs to be appropriate for the task of 
timely risk point placement, and significant risk point replacement toward the lower left after 
successful risk mitigation, without encouraging micro-management of risk point placement. 

The risk cube shown in Figure 2 represents an approach to achieve repeatable values 
likelihood and consequence.  The five-range, 25-square risk cube with integer assignment of 1-5 
for both likelihood and consequence provides sufficient granularity, reducing ambiguity in 
deciding which position is correct. This cube, along with a reasonable set of qualitative 
definitions of the ranges, provides engineers with a repeatable way to categorize risks. 

Qualitative descriptions/definitions criteria exist for each of the squares in the cube for both 
likelihood and consequence. These criteria or definitions add stability and repeatability to risk 
point placement. Without repeatability, the process would lose much of its value. Table 2 lists a 
set of definitions for a qualitative risk mapping from real risks to the five ranges of likelihood 
and consequence for technology. Any such definitions are tailored to company requirements. 
Further, more objectivity in the definitions provides more confidence in risk point placement. In 
fact, perfect objectivity in the determination of likelihood and consequence, though expensive 
and largely impracticable, would eliminate most of the biases described below. Likelihood can 
be made objective with objective historical data of frequency of events, while consequence can 



 

 

be made objective with historical data. Mil-Std 882d and Mil-Std 1629a describe approaches to 
more objective risk analysis. 
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Figure 2:  5x5 risk cube 

 
Table 2:  Qualitative description for five ranges of likelihood and consequence 

Qualitative scales for likelihood and consequence of technology risks 
Likelihood of failure – technology dependence 

Low Minor Moderate Significant High 
No new 

technology – 
Systems are off 

the shelf 

Minor 
modification of 

existing 
technology 

Dependant 
on innovative 
use of existing 
technologies 

Dependant 
on new 

technologies that 
are in 

development 

Dependant 
on new 

technologies that 
are not yet 

funded 
Consequence of failure – technical 

Low Minor Moderate Significant High 
Little or no 

impact on 
program 

objectives 

Minor 
reduction in 

technical 
performance 

with little or no 
impact on 
program 

objectives 

Reduction in 
technical 

performance 
with limited 
impact on 
program 

objectives 

Significant 
degradation in 

technical 
performance 
with a major 

impact on 
program 

objectives 

Major 
degradation in 

technical 
performance that 
could jeopardize 
program success 



 

 

COGNITIVE BIASES IN PROBABILITY AND VALUE 
The most accepted descriptive theory of subjective expected value decision making by humans is 
Prospect Theory, developed by Daniel Kahneman and Amos Tversky (1979). Kahneman won the 
Nobel Prize in Economics in 2002 "for having integrated insights from psychological research 
into economic science, especially concerning human judgment and decision-making under 
uncertainty" (Nobel, 2002). (Since Nobel prizes are not bestowed posthumously, Tversky did not 
share this prize.) The contention of the Kahneman and Tversky school of “heuristics and biases” 
is that the presence of cognitive biases – even in extensive and vetted analyses – can never be 
ruled out. Innate human biases, and exterior circumstances, such as the framing or context of a 
question, can compromise estimates, judgments and decisions. It is important to note that 
subjects often maintain a strong sense that they are acting rationally while exhibiting biases. 

Prospect Theory describes the subjective human decision-making process, specifically in the 
subjective assessment of probabilities and values, and their combination in gambles. Prospect 
Theory breaks subjective decision making into a preliminary ‘screening’ stage, and a secondary 
‘evaluation’ stage. In the screening stage, probabilities and values are subjectively assessed, 
while the evaluation stage combines the subjective probabilities and values (utilities). Only the 
subjective assessment of probabilities and values is of interest in this paper. 

Subjective Probability, π(p). Prospect Theory describes the subjective evaluation of 
probabilities, π(p), according to the experimentally-obtained curve in Figure 3 (Tversky and 
Kahneman, 1992). This non-linear transformation, π(p), shows how small probabilities are 
overestimated and large probabilities are underestimated. 
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Figure 3:  Subjective probability π(p) 

 
The modeling equation for subjective probability is (Tversky and Kahneman, 1992) 

π(p) = ( pδ) / [pδ + (1- p)δ](1/ δ) 

where p = objective probability, with 0 < δ ≤ 1. When δ =1, π(p) = p = objective probability. 
A usual value for δ is δ = 0.69 for losses (and λ = 0.61 for gains). 



 

 

Subjective Utility. One of the effects of Prospect Theory’s screening stage is that values are 
considered not in an absolute sense (from zero), but subjectively from the reference point 
established by the subject’s perspective and wealth before a decision. This is an example of the 
psychological phenomenon called framing. The key graph that shows how objective values 
translate into subjective utilities is shown in Figure 4. Note the significant disparity in magnitude 
with which gains and losses are subjectively valued – approximately a 1-to-2 ratio. 
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Figure 4:  Subjective utility versus objective value according to Prospect Theory 

 
For gains, 0 ≤ v ≤ ∞, the utility function may be:  U+(v) = Ln(1 + v), where v = objective value. 
While for losses, 0≤≤∞− v , the utility function may be:  U-(v) = -(μ)Ln(1 – v), with μ ≈2.3. 

Theoretical Implication of Prospect Theory for the Risk Cube. Figure 5 shows the 
theoretical implications of probability and value biases for the risk cube. The most obvious 
influence of non-symmetric subjective probability assessments will be to compress probability 
judgments inward toward the risk cube probability of three. Any non-symmetric effect may be 
difficult to observe. 

For the assessment of values, note that only the loss section of the objective value to 
subjective value (utility) graph has been employed. The reasoning is that risks deal with possible 
losses, and not with opportunities for gain. The most likely true prediction of the loss section of 
the value curve is the following. Human subjects exaggerate the influences of losses when the 
losses will occur to their personal wealth. In industry, the value curve predicts that managers 
with an increased sense of corporate ownership will maintain a heightened awareness as to the 
monetary loss and corporate destabilization that a technical risk could cause. In fact, given the 
limits of any corporation, this managerial view is correct. Line engineers with less buy-in and a 
broader job market, will tend to see the objective value of the consequences of risks. 
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Figure 5:  Theoretical implications of prospect theory for the risk cube 

INDUSTRY CASE STUDY DATA, BIASES, AND ANALYSES 
A set of high-quality industry data was analyzed to test for the presence of the theoretical 
implications. A sample of this data is given in Appendix A. The data were collected in the 
aerospace industry over a period of eight years for the purpose of risk management tracking. The 
engineers who entered the data did not know that the data would ever be used to test for the 
presence of cognitive biases. “Original data” refers to the first determination of likelihood and 
consequence numbers, while “current data” refers to the updated likelihood and consequence 
numbers, the update occurring months to years after the original datum point determination. 
Figure 6 shows the original data. 

 



 

 

Original Points

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Consequence

Li
ke

lih
oo

d

 
Figure 6:  Bubble chart of original data. Bubbles sized by area for datum counts  

ANALYSES AND OBSERVATIONS OF INITIAL DATA 
First, we note that there are two impediments for the appearance of cognitive biases in the 
industry data:  1) The industry data are granular while the predictions of Prospect Theory are for 
continuous data, and 2) the qualitative descriptions for the five ranges of likelihood and 
consequence may have some non-linear influence in the placement of risk datum points. 

Nevertheless, the evidence of cognitive biases emerges from the data as shown below. 

Estimation in a Pre-Define Scale Bias. Schwarz (1990) conducted the following experiment 
where a response scale effected judgment. The following two questions (now provided with 
average answers) were each posed to a random 50% of a group of experimental subjects. 

Please estimate the average number of hours you watch television per week: 
 ____      ____      __X_      ____        ____        ____ 
 1-4        5-8         9-12       13-16       17-20       More 

Please estimate the average number of hours you watch television per week: 
____      ____       __X_        ____       ____        ____ 
1-2          3-4          5-6           7-8         9-10         More than 10 

With both random halves of the experimental population, the average answer lay in the 
central option of the five pre-determined ranges. Numerically, however, the average answers do 
not coincide or even overlap. Obviously, humans cannot be trusted with a calibration problem, 
even when it pertains to their own personal experience. In this case, subjects seemed eager to 
calibrate a number in a way that seemed most compatible with the given range of scale. 

Statistical Evidence:  Figure 7 shows the original likelihood data centered in their 1-5 scale 
around L =3. 
 



 

 

 
Figure 7:  Likelihood data centered around L = 3 

 
Figure 8 shows the original consequence data centered around C = 3.5, and balanced on C =3 

and 4. An explanation for the shift toward higher consequence is provided in Section 3.5. 
 

 
Figure 8:  Consequence data balanced on C = 3 and 4 

 
There are some infrastructure biases that help explain the centered data. A production aircraft 

will have few extreme risks. Also, a risk program on a production aircraft will not focus on the 
low magnitude risks. 

Diagonal Bias. In anticipation of later moving the risk point toward the origin, risk points are 
withdrawn from the origin upward and rightward along the diagonal. 

Statistical Evidence:  Figure 9 shows a regression line plotted on the original data points. 
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Figure 9:  Regression line of original datum points showing a diagonal bias 

 
Table 3:  Regression parameters showing diagonal bias 

Regression on 1412 Original Points 
Likelihood Intercept Slope Coefficient R 

2.2 0.22 0.23 
 

Probability Centering Bias. Likelihoods are pushed toward L = 3, symmetrically as a first-
order approximation. 
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Figure 10:  Likelihood marginal distribution of original datum points 

 
Is seems that because ‘people estimate probabilities poorly’ (Cosmides and Tooby, 1996) 

they basically just distribute the original likelihood points symmetrically around likelihood=3. 
 



 

 

Table 4:  Likelihood original datum point counts compared with a normal distribution 
Likelihood Original Datum point counts 

1 2 3 4 5 
58 272 754 288 40 

Normal distribution with mean = 3 and standard deviation = 0.78 
38 330 676 330 38 

 
Statistical Evidence: The marginal distribution of likelihood of the original datum points 

show a high degree of symmetry: 58, 272, 754, 288, 40.  
Asymmetrical Probability Bias. The subjective probability transformation, π(p), predicts that 
likelihood data will be pushed toward L ≈  3, with large probabilities translated down more than 
small probabilities are translated up, resulting in a reduced amount of large subjective 
probabilities, comparatively. 

Statistical Evidence: The original datum counts for L =1 and L =5 are 58 and 40, 
respectively; 40<58, supporting the predicted asymmetry. The original datum counts for L = 2 
and L = 4 are 272 and 288, respectively; 272<288, not supporting the predicted asymmetry. 
However, it can be supposed that real risks prompting the creation of an original datum point 
usually have L ≥  3, and that such datum points have been in general pulled down from the L = 5 
area by the significant translation of π(p). 
Consequence Bias. Judged consequence is pushed toward higher C values. Figure 11 shows 
marginal consequence. 
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Figure 11:  Consequence marginal distribution of original datum points 

 

Consequence bias is theoretically predicted as occurring when an engineer seeks to 
communicate, through the placement of a risk datum point, that she/he is identifying the 
increased danger of risks as they can impact an entire corporation.  On a personal basis, 
engineers usually experience greatly lesser losses, and so seem to perceive less risk. 



 

 

Statistical Evidence. The original consequence counts in Table 5 show that most 
consequence counts are at C = 4.  
 

Table 5:  Consequence original datum point counts 
Consequence Original Datum Points 

1 2 3 4 5 
20 145 538 599 110 

 
The C =1 counts are significantly less than C = 5 counts, and, the C =2 counts are significantly 
less than the C = 4 counts. Of course, some upward skewing of the original consequence data is 
expected, as the risk points address real concerns. However, the consequence count distribution 
is markedly different from the likelihood counts distribution; a Chi-Squared sum of 604.41 with 
4 degrees of freedom gives ~0 probability that the distributions are equal. 
 An explanation for the spreading of the consequence distribution is that consequences in 
fact occur over a range of values. There is not one point value for a consequence, as 
consequences can occur over a range of magnitudes. For example, engine failure results in 
difference consequences, depending on other conditions. 

ANALYSES AND OBSERVATIONS OF RISK MITIGATION 
Figure 12 shows the new location of the risk datum points after mitigation efforts. 
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Figure 12:  Mitigated, or current, risk datum points 



 

 

 
Figure 13 shows the change of likelihood and consequence in the datum points.  
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Figure 13:  Change of likelihood and consequence in the datum points 

 

Many Risk Datum Points Did Not Change Location. Explanation:  Risk mitigation may have 
been difficult in many risks. Additionally, it is possible that many of the risk plans were not 
updated and were just abandoned by the risk originator.   
No Risk Datum Points Were Moved To 0 Likelihood Or 0 Consequence. Explanation:  No 
significant architectural changes that absolutely eliminated a particular risk were made. Many 
programs stop working on a risk when it reaches a certain level of risk verses consequences. 
Note: Because no risk was moved to 0 likelihood and 0 consequence, the word “abate” is not 
used in this paper.  
Likelihood Is Mitigated More Than Consequence. Possible explanations:  The usual risk 
situation in an aerospace program more readily allows a reduction in likelihood as opposed to 
consequence. Working engineers may be more able to reduce the likelihood of occurrence of a 
risk than the architecturally determined consequences. 

Statistical Evidence:  Consideration of all original and current risk point data yields Table 6. 
 

Table 6:  Likelihood mitigation versus consequence mitigation 
Likelihood mitigation versus consequence mitigation 

 Likelihood Consequence 
Total mitigation 1114 911 

Average mitigation 0.7890 0.6452 
99% confidence 

interval 0.7214 0.8566 0.5776 0.7128 

Standard deviation 0.9850 0.9851 



 

 

 
The 99% confidence intervals show that the mitigation processes on likelihood and 

consequence are almost certainly different. Likelihood is mitigated more that consequence. 
One school of thought is that you cannot ever reduce the consequence of a risk you can 

merely lower the likelihood of its occurrence.  Not all risk practitioners subscribe to this theory, 
and there is no fast rule as to its application.  The data seems to suggest that this group of 
engineers subscribes to this theory. 

COST, SCHEDULE AND TECHNICAL RISK PERCEPTION AND 
MITIGATION 
The original and current averages of cost, schedule and technical points are show in Figure 14. 
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Figure 14:  Average mitigation of cost, schedule and technical risks 

 
Mitigation Of Likelihood. Figure 14 gives evidence that the line engineers originally perceives 
technical likelihood as greater than either schedule or cost likelihood. Subsequently, more effort 
is applied to mitigate technical likelihood than either schedule or cost likelihoods. In fact, cost 
likelihood is mitigated less than schedule likelihood. 

Statistical Evidence:  Figure 15 shows the order of likelihood mitigation emphasis from 
greatest to least:  technical likelihood, schedule likelihood, and lastly cost likelihood. 
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Figure 15:  Likelihood mitigation compared 

 
Table 7:  Order of likelihood mitigation 

Order of likelihood mitigation 
1. Technical 
2. Schedule 

3. Cost 
 
The data reveal differences in worker and manager foci that have been widely recognized 

since the beginning of management science. Namely, line engineers focus most on the technical 
risk likelihoods that they are most familiar with, they focus secondarily on schedule risk 
likelihood that management communicates to them, and least on cost risk likelihoods that are 
less frequently communicated by management. Lean models of value creation suggest that 
cognizance of cost risk likelihoods should be more effectively communicated. 

Mitigation Of Consequence. Figure 14 shows that the line engineer originally perceives 
schedule consequence as greater than either technical or cost consequence. 

Statistical Evidence:  Figure 16 shows consequence mitigation emphasis, showing that the 
line engineer does more to mitigate schedule consequence than either technical or cost 
consequences. Cost consequence is mitigated less than technical consequence. 
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Figure 16:  Consequence mitigation compared 

 
The order of consequence mitigation emphasis is thus, from greatest to least:  schedule 

consequence, technical consequence, and lastly cost consequence.  
 

Table 8: Order of consequence mitigation 
Order of consequence mitigation 

1. Schedule 
2. Technical 

3. Cost 
 

The data thus reveal that line engineers focus most on schedule consequences that effect their 
careers, they focus secondarily on technical consequences that effect their job performance 
reviews, and focus least on cost consequences that are more remote and associated with 
management. Lean models of value creation suggest that a higher cognizance of cost risk will be 
valuable at the engineering level.

  

CONCLUSION 
To the authors’ knowledge, this is the first time that the effects of cognitive biases have been 
documented within the risk cube. The data show clear evidence that probability and value 
translations, as likelihood and consequence judgments, are present in industry risk cube data. The 
straightforward steps in the development of this conclusion were as follows:  1) the translations 
were predicted by prospect theory, and, 2) historical data from 2 programs within 1 company 
confirmed the main predictions. Risk cubes have thus been shown to be, not objective number 
grids, but subjective, albeit useful, means to verify that risk items have received risk-mitigating 
attention. Confirmation of the presence of probability and value biases in risk data from other 
industries or companies can be the subject of future papers. The real world effects of using 
biased risk mitigation data should also be explored. 
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